760 research outputs found

    A Fully Self-Consistent Treatment of Collective Fluctuations in Quantum Liquids

    Full text link
    The problem of calculating collective density fluctuations in quantum liquids is revisited. A fully quantum mechanical self-consistent treatment based on a quantum mode-coupling theory [E. Rabani and D.R. Reichman, J. Chem. Phys.116, 6271 (2002)] is presented. The theory is compared with the maximum entropy analytic continuation approach and with available experimental results. The quantum mode-coupling theory provides semi-quantitative results for both short and long time dynamics. The proper description of long time phenomena is important in future study of problems related to the physics of glassy quantum systems, and to the study of collective fluctuations in Bose fluids.Comment: 9 pages, 4 figure

    Predicting the thermodynamics by using state-dependent interactions

    Full text link
    We reconsider the structure-based route to coarse graining in which the coarse-grained model is defined in such a way to reproduce some distributions functions of the original system as accurately as possible. We consider standard expressions for pressure and chemical potential applied to this family of coarse-grained models with density-dependent interactions and show that they only provide approximations to the pressure and chemical potential of the underlying original system. These approximations are then carefully compared in two cases: we consider a generic microscopic system in the low-density regime and polymer solutions under good-solvent conditions. Moreover, we show that the state-dependent potentials depend on the ensemble in which they have been derived. Therefore, care must be used in applying canonical state-dependent potentials to predict phase lines, which is typically performed in other ensembles.Comment: 29 pages, 1 figure; To appear in J. Chem. Phy

    Measurements of the Solid-body Rotation of Anisotropic Particles in 3D Turbulence

    Full text link
    We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from stereoscopic video images of their motion in a turbulent flow between oscillating grids with RλR_\lambda=9191. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, ⟨p˙ip˙i⟩\langle \dot{p}_i \dot{p}_i \rangle, confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of crosses with the direction of the solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients of the flow.Comment: 15 pages, 7 figure

    Experimental Measurements of Stretching Fields in Fluid Mixing

    Get PDF
    The mixing of an impurity into a flowing fluid is an important process in many areas of science, including geophysical processes, chemical reactors, and microfluidic devices. In some cases, for example periodic flows, the concepts of nonlinear dynamics provide a deep theoretical basis for understanding mixing. Unfortunately, the building blocks of this theory, i.e. the fixed points and invariant manifolds of the associated Poincaré map, have remained inaccessible to direct experimental study, thus limiting the insight that could be obtained. Using precision measurements of tracer particle trajectories in a two-dimensional fluid flow producing chaotic mixing, we directly measure the time-dependent stretching fields. These quantities, previously available only numerically, attain local maxima along lines coinciding with the stable and unstable manifolds, thus revealing the dynamical structures that control mixing. Contours or level sets of a passive impurity field are found to be aligned parallel to the lines of large stretching at each instant, thus explaining what happens as one stirs milk into coffee. --author-supplied descriptio

    Coarse-Grained Simulations of Membranes under Tension

    Full text link
    We investigate the properties of membranes under tension by Monte-Carlo simulations of a generic coarse-grained model for lipid bilayers. We give a comprising overview of the behavior of several membrane characteristics, such as the area per lipid, the monolayer overlap, the nematic order, and pressure profiles. Both the low-temperature regime, where the membranes are in a gel phase, and the high-temperature regime, where they are in the fluid phase, are considered. In the gel state, the membrane is hardly influenced by tension. In the fluid state, high tensions lead to structural changes in the membrane, which result in different compressibility regimes. The ripple state, which is found at tension zero in the transition regime between the fluid and the gel phase, disappears under tension and gives way to an interdigitated phase. We also study the membrane fluctuations in the fluid phase. In the low tension regime the data can be fitted nicely to a suitably extended elastic theory. At higher tensions the elastic fit consistently underestimates the strength of long-wavelength fluctuations. Finally, we investigate the influence of tension on the effective interaction between simple transmembrane inclusions and show that tension can be used to tune the hydrophobic mismatch interaction between membrane proteins.Comment: 14 pages, 14 figures, accepted for publication in The Journal of Chemical Physic

    Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core

    Get PDF
    The molecular events that permit the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to bind, fuse, and enter cells are important to understand for both fundamental and therapeutic reasons. Spike proteins consist of S1 and S2 domains, which recognize angiotensin-converting enzyme 2 (ACE2) receptors and contain the viral fusion machinery, respectively. Ostensibly, the binding of spike trimers to ACE2 receptors promotes the preparation of the fusion machinery by dissociation of the S1 domains. We report the development of bottom-up coarse-grained (CG) models validated with cryo-electron tomography (cryo-ET) data, and the use of CG molecular dynamics simulations to investigate the dynamical mechanisms involved in viral binding and exposure of the S2 trimeric core. We show that spike trimers cooperatively bind to multiple ACE2 dimers at virion-cell interfaces. The multivalent interaction cyclically and processively induces S1 dissociation, thereby exposing the S2 core containing the fusion machinery. Our simulations thus reveal an important concerted interaction between spike trimers and ACE2 dimers that primes the virus for membrane fusion and entry

    Ordered Clusters and Dynamical States of Particles in a Vibrated Fluid

    Get PDF
    Reports the discovery and explanation of ordered arrangements of particles that are immersed in a fluid. When they move with respect to the fluid, dynamical forces arise that are mediated by the fluid. These forces lead to self-assembly of structures. --author-supplied descriptio

    Coarse-Graining with Equivariant Neural Networks: A Path Towards Accurate and Data-Efficient Models

    Full text link
    Machine learning has recently entered into the mainstream of coarse-grained (CG) molecular modeling and simulation. While a variety of methods for incorporating deep learning into these models exist, many of them involve training neural networks to act directly as the CG force field. This has several benefits, the most significant of which is accuracy. Neural networks can inherently incorporate multi-body effects during the calculation of CG forces, and a well-trained neural network force field outperforms pairwise basis sets generated from essentially any methodology. However, this comes at a significant cost. First, these models are typically slower than pairwise force fields even when accounting for specialized hardware which accelerates the training and integration of such networks. The second, and the focus of this paper, is the need for the considerable amount of data needed to train such force fields. It is common to use tens of microseconds of molecular dynamics data to train a single CG model, which approaches the point of eliminating the CG models usefulness in the first place. As we investigate in this work, it is apparent that this data-hunger trap from neural networks for predicting molecular energies and forces is caused in large part by the difficulty in learning force equivariance, i.e., the fact that force vectors should rotate while maintaining their magnitude in response to an equivalent rotation of the system. We demonstrate that for CG water, networks that inherently incorporate this equivariance into their embedding can produce functional models using datasets as small as a single frame of reference data, which networks without inherent symmetry equivariance cannot

    Utilizing Machine Learning to Greatly Expand the Range and Accuracy of Bottom-Up Coarse-Grained Models Through Virtual Particles

    Full text link
    Coarse-grained (CG) models parameterized using atomistic reference data, i.e., 'bottom up' CG models, have proven useful in the study of biomolecules and other soft matter. However, the construction of highly accurate, low resolution CG models of biomolecules remains challenging. We demonstrate in this work how virtual particles, CG sites with no atomistic correspondence, can be incorporated into CG models within the context of relative entropy minimization (REM) as latent variables. The methodology presented, variational derivative relative entropy minimization (VD-REM), enables optimization of virtual particle interactions through a gradient descent algorithm aided by machine learning. We apply this methodology to the challenging case of a solvent-free CG model of a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer and demonstrate that introduction of virtual particles captures solvent-mediated behavior and higher-order correlations which REM alone cannot capture in a more standard CG model based only on the mapping of collections of atoms to the CG sites.Comment: 35 pages, 9 figure

    Strain and rupture of HIV-1 capsids during uncoating

    Get PDF
    Viral replication in HIV-1 relies on a fullerene-shaped capsid to transport genetic material deep into the nucleus of an infected cell. Capsid stability is linked to the presence of cofactors, including inositol hexakisphosphates (IP6) that bind to pores found in the capsid. Using extensive all-atom molecular dynamics simulations of HIV-1 cores imaged from cryo-electron tomography (cryoET) in intact virions, which contain IP6 and a ribonucleoprotein complex, we find markedly striated patterns of strain on capsid lattices. The presence of these cofactors also increases rigidity of the capsid. Conformational analysis of capsid proteins (CA) show CA accommodates strain by locally flexing away from structures resolved using X-ray crystallography and cryo-ET. Then, cryo-ET of HIV-1 cores undergoing endogenous reverse transcription demonstrates that lattice strain increases in the capsid prior to mechanical failure and that the capsid ruptures by crack propagation along regions of high strain. These results uncover HIV-1 capsid properties involved in their critical disassembly process
    • …
    corecore